Ni-MH: The Long Life Battery!

For today’s lifestyles, the most important attribute to consider is mobility. Advanced electronic devices such as portable computers and cell phones allow people to perform much more effectively than ever before. With mobility comes the increased need for portable power sources.

Fortunately, this advancement in electronics is matched with improvements in batteries that power these devices. Ni-MH batteries provide much more power than the Ni-Cd batteries and also eliminate any concerns on the usage of heavy metals in the making of these cells. The exciting new technology used in the sealed Ni-MH rechargeable batteries provides optimum results for battery-powered devices, in terms of performance and environmental friendliness.

Introduced to the commercial market in 1988, the Ni-MH battery is still at an early stage of matur


Click For Details

ity, but has already proven to be an attractive power source for today’s devices.

There are several benefits of Ni-MH batteries, such as a higher energy density, which is almost 40% more than the nickel-cadmium batteries. This increase in energy density helps with providing longer run times, which means longer service life than ordinary batteries of the same size. They also charge much faster, in approximately one hour. They are safe to use and designed to withstand a variety of abusive conditions in consumer devices. Unlike the Ni-Cd batteries and other battery systems, they are environmental friendly, as there is no fear of cadmium, mercury or lead toxicity.

Today, the Ni-MH battery is hugely popular with high-end portable electronic devices where the performance of the battery translates into run-time, which is a major consideration for a consumer and influences their decision in the purchase of product. The reduced weight and volume also play an important role.

Ni-MH batteries are similar to Ni-Cd batteries as they use the same technology. The only difference is that they use hydrogen-absorbing negative electrode instead of the cadmium-based electrode used in Ni-Cd. This small change increases the electrical capacity of the battery as well as eliminates the toxicity problem. The problem of “memory” does not exist in the Ni-MH batteries, as there is no cadmium used.

These batteries are designed to ensure maximum safety with a safety vent, to avoid build up of pressure in case of being exposed to high temperature, charged excessively or abused in other ways. They can also be used in any position and the only maintenance that is needed is to keep them dry and clean while in use as well as in storage. Whether stored when charged or discharged, nothing happens to these batteries.

The Benefits Of Lead-Acid Batteries!

Lead-acid batteries or “starting batteries,” as they are also called, are the oldest rechargeable batteries in existence and the first used for commercial use. They have dominated the market for over 100 years, ever since their invention in the 1850s by Gaston Plante, a French engineer, and continue to weave their magic to this day. The surge of new batteries in the market has not lessened their importance.

Today, lead-acid are cost-effective and their ability to supply high surge currents, makes them the most viable option for use in cars and other motor vehicles, as they meet the requirement of the high current that automobile starter motors need.

Car batteries are used to start diesel or gasoline engines, as they provide the electricity needed for starter motors, ignition, lights and other electronic features. Most of the car batteries are lead-acid batteries and the energy is produced through a chemical process that involves lead, lead oxide and a liquid electrolyte solution. Plates of lead and lead oxide sit in the electrolyte solution that is made up of a small percentage of sulfuric acid and more of water. This causes a chemical reaction and electrons are released, which are all routed through conductors in the battery to generate the electricity needed for the car.

When lead batteries are discharged, sulfuric acid forms on the lead plates, and when they are recharged again, this sulfuric acid on the plates breaks back into its constituent lead and lead oxide.

Some car batteries need maintenance in the form of adding water. It was during the 1970s that maintenance-free sealed lead-acid batteries were developed and they can be used in any position, sideways or upside down without the risk of acid leakage. The liquid electrolyte is gelled into separators and sealed. Safety valves are used to allow venting during charging, discharging and other atmospheric pressure changes.

Currently, there are two lead-acid systems used, the small sealed lead-acid (SLA) and the larger valve-regulated lead-acid (VRLA).

The newer type of sealed lead-acid batteries are the Absorbed Glass Mat batteries (AGM) that are maintenance free and the plates are mounted in such a way that they can withstand extensive vibration and shock. The hydrogen emission from cars using these batteries is less than 4% and self-discharge is extremely low at 1-3% per month. This gives them long storage before the need to recharge. These batteries are more expensive than the flooded lead-acid batteries (liquid electrolyte), but because of their durability, they are the preferred version for high performance cars rather than the flooded variety.

One of the best things about lead-acid batteries is their self-discharge, which is one of the best on rechargeable batteries at about 40% per year, in comparison with nickel-cadmium that self-discharges in three months.

In conclusion, lead-acid batteries are a perfect choice for cars as they are inexpensive, reliable and provide dependable service, durable when used appropriately, and they have the lowest self-discharge rate among rechargeable batteries.

Battery Reconditioning